Modularized Morphing of Neural Networks
نویسندگان
چکیده
In this work we study the problem of network morphism, an effective learning scheme to morph a well-trained neural network to a new one with the network function completely preserved. Different from existing work where basic morphing types on the layer level were addressed, we target at the central problem of network morphism at a higher level, i.e., how a convolutional layer can be morphed into an arbitrary module of a neural network. To simplify the representation of a network, we abstract a module as a graph with blobs as vertices and convolutional layers as edges, based on which the morphing process is able to be formulated as a graph transformation problem. Two atomic morphing operations are introduced to compose the graphs, based on which modules are classified into two families, i.e., simple morphable modules and complex modules. We present practical morphing solutions for both of these two families, and prove that any reasonable module can be morphed from a single convolutional layer. Extensive experiments have been conducted based on the state-of-the-art ResNet on benchmark datasets, and the effectiveness of the proposed solution has been verified.
منابع مشابه
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملNetwork Morphism
We present in this paper a systematic study on how to morph a well-trained neural network to a new one so that its network function can be completely preserved. We define this as network morphism in this research. After morphing a parent network, the child network is expected to inherit the knowledge from its parent network and also has the potential to continue growing into a more powerful one...
متن کاملModular learning in neural networks - a modularized approach to neural network classification
Interestingly, modular learning in neural networks a modularized approach to neural network classification that you really wait for now is coming. It's significant to wait for the representative and beneficial books to read. Every book that is provided in better way and utterance will be expected by many peoples. Even you are a good reader or not, feeling to read this book will always appear wh...
متن کامل3D Polygon Mesh Compression with Multi Layer Feed Forward Neural Networks
In this paper, an experiment is conducted which proves that multi layer feed forward neural networks are capable of compressing 3D polygon meshes. Our compression method not only preserves the initial accuracy of the represented object but also enhances it. The neural network employed includes the vertex coordinates, the connectivity and normal information in one compact form, converting the di...
متن کاملNeural Network Architecture for 3D Object Representation
The paper discusses a neural network architecture for 3D object modeling. A multi-layered feedforward structure having as inputs the 3D-coordinates of the object points is employed to model the object space. Cascaded with a transformation neural network module, the proposed architecture can be used to generate and train 3D objects, perform transformations, set operations and object morphing. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.03281 شماره
صفحات -
تاریخ انتشار 2016